PhD on Data Challenges in Predictive Maintenance - Tenders Global

PhD on Data Challenges in Predictive Maintenance

Eindhoven University of Technology

tendersglobal.net


24 Jan 2024
Job Information

Organisation/Company
Eindhoven University of Technology
Department
Industrial Engineering and Innovation Sciences
Research Field
Engineering » Industrial engineering
Researcher Profile
First Stage Researcher (R1)
Country
Netherlands
Application Deadline
29 Feb 2024 – 12:00 (Europe/Amsterdam)
Type of Contract
Temporary
Job Status
Full-time
Hours Per Week
36-40
Is the job funded through the EU Research Framework Programme?
Not funded by an EU programme
Is the Job related to staff position within a Research Infrastructure?
No

Offer Description
Job description

Are you fascinated by predictive maintenance approaches for smart industry? Are you eager to work on developing AI and data-driven models for maintenance decision support? Are you willing to dive into the data challenges in predictive maintenance? Are you fascinated by combining theory and real-world implementation?

Context

Maintenance service is crucial in ensuring minimal downtime, maximal productivity, and reliability of complex systems at a minimum ownership cost. Data-driven predictive maintenance (PdM) is a promising approach where system owners monitor the parameters of their machines using sensors and inspections, estimate and predict health conditions, and make optimal repair plans. However, a big challenge to implement PdM in practice is related to data. For example, which data needs to be monitored? How can sensor data and expert inspections be combined? How can models be trained from limited/biased/unlabeled data? How can models be adjusted to diverse environmental/operational conditions?

Project Description

This project focuses on developing innovative methodologies for data-driven predictive maintenance, combining inspection strategies, health indicator models, and maintenance planning. These methodologies will address data challenges, such as combining inspection results and sensor data, training with incomplete data, and transferring models to different domain data. When implemented in systems, these will support real-time decisions of human operators for optimal performance in dynamic environments.

Job Description

You will design and lead the research project with the guidance of the supervisory team (dr. Juseong Lee , dr. Claudia Fecarotti , and dr.Alp Akçay  ). You will conduct innovative research at the intersection between data science, industrial engineering, and reliability engineering. You will first focus on methodological approaches (improving and developing machine learning algorithms) and then move on to application-driven approaches (implementing algorithms in operational environments). You will publish the results in international journals and conferences to communicate with academia and other societal stakeholders.

Academic and Research Environment

The project, the supervisors, and eventually also the PhD students are embedded in TU/e’s Operations, Planning, Accounting, and Control group (OPAC)).
OPAC uses methods from operations research and operations management on a wide variety of problems, and currently hosts around 50 PhD students from various backgrounds. You will be able to collaborate with other PhD researchers in the domain of Data Driven Decision Making.

 
Job requirements

  • A master’s degree in Industrial Engineering, Operations Research, (Applied) Mathematics, Computer Science, Data Science,  or a related field of engineering such as Mechanical Engineering, Aerospace Engineering, Civil Engineering, etc.
  • Capability and passion for working on challenging topics that have both fundamental and applied research aspects.
  • Strong competence in analytical skills, mathematical skills, and quantitative modeling.
  • Strong expertise in programming, including proficiency in languages commonly used in data analysis and machine learning, such as Python.
  • Excellent verbal and written communication skills to collaborate in an international setting.
  • Fluent in spoken and written English (C1 level).
  • Ability to work in an interdisciplinary team and collaborate with industrial partners.
  • Motivated to develop your teaching skills and coach students.

 

Conditions of employment

A meaningful job in a dynamic and ambitious university, in an interdisciplinary setting and within an international network. You will work on a beautiful, green campus within walking distance of the central train station. In addition, we offer you:

  • Full-time employment for four years, with an intermediate evaluation (go/no-go) after nine months. You will spend 10% of your employment on teaching tasks.
  • Salary and benefits (such as a pension scheme, paid pregnancy and maternity leave, partially paid parental leave) in accordance with the Collective Labour Agreement for Dutch Universities, scale P (min. €2,770 max. €3,539).
  • A year-end bonus of 8.3% and annual vacation pay of 8%.
  • High-quality training programs and other support to grow into a self-aware, autonomous scientific researcher. At TU/e we challenge you to take charge of your own learning process .
  • An excellent technical infrastructure, on-campus children’s day care and sports facilities.
  • An allowance for commuting, working from home and internet costs.
  • A Staff Immigration Team  and a tax compensation scheme (the 30% facility) for international candidates.

 
Information and application
About us

Eindhoven University of Technology is an internationally top-ranking Dutch university that combines scientific curiosity with a hands-on attitude. Our spirit of collaboration translates into an open culture and a number 1 position in collaborating with advanced industries. Fundamental knowledge enables us to design solutions for the highly complex problems of today and tomorrow. 

Curious to hear more about what it’s like as a PhD candidate at TU/e? Please view the video.

Information

Do you recognize yourself in this profile and would you like to know more?
Please contact dr. Juseong Lee (assistant professor, j.lee[at]tue.nl), dr. Claudia Fecarotti (assistant professor, c.fecarotti[at]tue.nl), or dr. Alp Akçay (associate professor, a.e.akcay[at]tue.nl).

Visit our website for more information about the application process  or the conditions of employment.
Are you inspired and would like to know more about working at TU/e? Please visit our career page .

Application

We invite you to submit a complete application by using the ‘apply now’-button on this page.
The application should include a:

  • Cover letter (2 page max) in which you describe your motivation, and qualifications for the position.
  • Research plan (2 page max) for this research project.
  • Curriculum vitae, including a list of your publications and relevant experience.
  • Contact information of two references.
  • Transcripts of Master’s and Bachelor’s program, including the list of courses and grades.
  • Proof of English proficiency (C1 level or an equivalent level).
     

We look forward to receiving your application and will screen it as soon as possible. The vacancy will remain open until the position is filled.

Requirements

Research Field
Engineering
Education Level
Master Degree or equivalent

Languages
ENGLISH
Level
Excellent

Additional Information
Work Location(s)

Number of offers available
1
Company/Institute
Eindhoven University of Technology
Country
Netherlands
City
Eindhoven
Geofield

Where to apply

Website
https://jobs.tue.nl/en/vacancy/phd-on-data-challenges-in-predictive-maintenance…

Contact

State/Province
The Netherlands
City
Eindhoven
Website
https://www.tue.nl/en/our-university/departments/industrial-engineering-and-innovation-sciences/
Street
Groene Loper 3
Postal Code
5612 AE
E-Mail
[email protected]

STATUS: EXPIRED

View or Apply
To help us track our recruitment effort, please indicate in your email – cover/motivation letter where (tendersglobal.net) you saw this job posting.

Job Location